首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of N-glycosylation induces tyrosine sulphation of hybridoma immunoglobulin G.
Authors:P A Baeuerle and W B Huttner
Abstract:
Immunoglobulin G2a (IgG2a) secreted by the hybridoma line M 31 was found to contain covalently linked sulphate. The sulphate was bound to the heavy chain which existed in several isoelectric variants. All variants were sulphated, the more acidic ones being more highly sulphated. Within the heavy chain the sulphate was not linked to tyrosine, threonine or serine residues, but appeared to be bound to N-linked oligosaccharides located in the Fab-portion. In contrast, the N-linked oligosaccharides in the Fc-portion were unsulphated. Surprisingly, the unglycosylated IgG secreted in the presence of tunicamycin, an inhibitor of N-glycosylation, was not unsulphated, but contained four times as much sulphate on the heavy chain as control IgG. All isoelectric variants of the non-glycosylated heavy chain contained sulphate. This sulphate was localized in the Fc-portion and was largely bound to tyrosine residues. These results show that, upon inhibition of N-glycosylation, the IgG is not simply secreted in non-glycosylated form, but has undergone a different post-translational modification, tyrosine sulphation. We discuss the possibility that tyrosine sulphate residues functionally compensate for the absence of N-linked (sulphated) oligosaccharides in IgG. One common function for these two protein modifications could be to serve as signals for the secretion of IgG.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号