首页 | 本学科首页   官方微博 | 高级检索  
     


Proteomic profiling during atherosclerosis progression: Effect of nebivolol treatment
Authors:Beste Ozben  Evrim Dursun  Emanuela Monari  Aurora Cuoghi  Stefania Bergamini  Aldo Tomasi  Tomris Ozben
Affiliation:1. Faculty of Medicine, Department of Cardiology, Marmara University, Yildiz Caddesi Konak Apartmani No: 43/24, Besiktas/Istanbul, 34353, Turkey
2. Medical Faculty, Department of Biochemistry, Akdeniz University, Antalya, Turkey
3. Medical Faculty, Department of Laboratory Medicine, University of Modena and Reggio Emilia, Modena, Italy
Abstract:
There is a great need for the identification of biomarkers for the early diagnosis of atherosclerosis and the agents to prevent its progression. The aim of this study was to explore the effect of 24 week of nebivolol (a third-generation vasodilatory beta-blocker) treatment on serum protein profiles in Apo E?/? mice during atherosclerosis progression. Nebivolol treated and non-treated (the control group) groups consisted of 10 genetically modified homozygous Apo E?/? mice. Proteomic analyses were performed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the serum samples from the nebivolol treated and non-treated Apo E?/? mice. The protein profiles obtained using three different chips, CM10 (weak cation-exchange), H50 (reverse phase), and IMAC30-Cu2+ (immobilized metal affinity capture) were statistically analyzed using the ProteinChip data manager 3.0 program. At the end of 24 week of nebivolol-treatment period, a total of 662 protein/peptide clustering peaks were detected using 12 different conditions and reading with high and low intensity laser energy. The highest total number of protein/peptide clusters was found on H50 chip array. The peak intensities of 95 of the 662 protein/peptide clusters were significantly different in the nebivolol-treated atherosclerotic group in comparison to the non-treated control mice groups (P < 0.05). Forty-three protein/peptides were up-regulated (high signal intensity) while 52 protein/peptides had lower signal intensity (down-regulated) in the nebivolol-treated atherosclerotic group. The proteomic profiles of nebivolol-treated Apo E?/? mice were different than the control group indicating a potential role of nebivolol in atherosclerosis. Our study contributes to understand the efficacy of nebivolol on serum protein/peptide profiles during atherosclerosis development.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号