首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Computational modelling of the open-state Kv 1.5 ion channel block by bupivacaine
Authors:Luzhkov Victor B  Nilsson Johanna  Arhem Peter  Aqvist Johan
Institution:Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden.
Abstract:Binding of R(+)-bupivacaine to open-state homology models of the mammalian K(v)1.5 membrane ion channel is studied using automated docking and molecular dynamics (MD) methods. Homology models of K(v)1.5 are built using the 3D structures of the KcsA and MthK channels as a template. The packing of transmembrane (TM) alpha-helices in the KcsA structure corresponds to a closed channel state. Opening of the channel may be reached by a conformational transition yielding a bent structure of the internal S6 helices. Our first model of the K(v) open state involves a PVP-type of bending hinge in the internal helices, while the second model corresponds to a Gly-type of bending hinge as found in the MthK channel. Ligand binding to these models is probed using the common local anaesthetic bupivacaine, where blocker binding from the intracellular side of the channel is considered. Conformational properties and partial atomic charges of bupivacaine are determined from quantum mechanical HF/6-31G* calculations with inclusion of solvent effects. The automated docking and MD calculations for the PVP-bend model predict that bupivacaine could bind either in the central cavity or in the PVP region of the channel pore. Linear interaction energy (LIE) estimates of the binding free energies for bupivacaine predict strongest binding to the PVP region. Surprisingly, no binding is predicted for the Gly-bend model. These results are discussed in light of electrophysiological data which show that the K(v)1.5 channel is unable to close when bupivacaine is bound.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号