A Role for the Tyrosine Kinase Pyk2 in Depolarization-induced Contraction of Vascular Smooth Muscle |
| |
Authors: | Ryan D. Mills Mitsuo Mita Jun-ichi Nakagawa Masaru Shoji Cindy Sutherland Michael P. Walsh |
| |
Affiliation: | From the ‡Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada and ;the §Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan |
| |
Abstract: | Depolarization of the vascular smooth muscle cell membrane evokes a rapid (phasic) contractile response followed by a sustained (tonic) contraction. We showed previously that the sustained contraction involves genistein-sensitive tyrosine phosphorylation upstream of the RhoA/Rho-associated kinase (ROK) pathway leading to phosphorylation of MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase (MLCP)) and myosin regulatory light chains (LC20). In this study, we addressed the hypothesis that membrane depolarization elicits activation of the Ca2+-dependent tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2). Pyk2 was identified as the major tyrosine-phosphorylated protein in response to membrane depolarization. The tonic phase of K+-induced contraction was inhibited by the Pyk2 inhibitor sodium salicylate, which abolished the sustained elevation of LC20 phosphorylation. Membrane depolarization induced autophosphorylation (activation) of Pyk2 with a time course that correlated with the sustained contractile response. The Pyk2/focal adhesion kinase (FAK) inhibitor PF-431396 inhibited both phasic and tonic components of the contractile response to K+, Pyk2 autophosphorylation, and LC20 phosphorylation but had no effect on the calyculin A (MLCP inhibitor)-induced contraction. Ionomycin, in the presence of extracellular Ca2+, elicited a slow, sustained contraction and Pyk2 autophosphorylation, which were blocked by pre-treatment with PF-431396. Furthermore, the Ca2+ channel blocker nifedipine inhibited peak and sustained K+-induced force and Pyk2 autophosphorylation. Inhibition of Pyk2 abolished the K+-induced translocation of RhoA to the particulate fraction and the phosphorylation of MYPT1 at Thr-697 and Thr-855. We conclude that depolarization-induced entry of Ca2+ activates Pyk2 upstream of the RhoA/ROK pathway, leading to MYPT1 phosphorylation and MLCP inhibition. The resulting sustained elevation of LC20 phosphorylation then accounts for the tonic contractile response to membrane depolarization. |
| |
Keywords: | Myosin Rho (Rho GTPase) Vascular Smooth Muscle Protein-Tyrosine Kinase (Tyrosine-Protein Kinase) Rho-associated Kinase Depolarization Tonic Contraction Myosin Light Chain Phosphorylation |
|
|