首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity
Authors:Kharrat Riadh  Servent Denis  Girard Emmanuelle  Ouanounou Gilles  Amar Muriel  Marrouchi Riadh  Benoit Evelyne  Molgó Jordi
Institution:Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette, France.
Abstract:Gymnodimines (GYMs) are phycotoxins exhibiting unusual structural features including a spirocyclic imine ring system and a trisubstituted tetrahydrofuran embedded within a 16-membered macrocycle. The toxic potential and the mechanism of action of GYM-A, highly purified from contaminated clams, have been assessed. GYM-A in isolated mouse phrenic hemidiaphragm preparations produced a concentration- and time-dependent block of twitch responses evoked by nerve stimulation, without affecting directly elicited muscle twitches, suggesting that it may block the muscle nicotinic acetylcholine (ACh) receptor (nAChR). This was confirmed by the blockade of miniature endplate potentials and the recording of subthreshold endplate potentials in GYM-A paralyzed frog and mouse isolated neuromuscular preparations. Patch-clamp recordings in Xenopus skeletal myocytes revealed that nicotinic currents evoked by constant iontophoretical ACh pulses were blocked by GYM-A in a reversible manner. GYM-A also blocked, in a voltage-independent manner, homomeric human alpha7 nAChR expressed in Xenopus oocytes. Competition-binding assays confirmed that GYM-A is a powerful ligand interacting with muscle-type nAChR, heteropentameric alpha3beta2, alpha4beta2, and chimeric alpha7-5HT(3) neuronal nAChRs. Our data show for the first time that GYM-A broadly targets nAChRs with high affinity explaining the basis of its neurotoxicity, and also pave the way for designing specific tests for accurate GYM-A detection in shellfish samples.
Keywords:gymnodimine  marine phycotoxins  muscle nicotinic acetylcholine receptor  neuromuscular junction  neuronal nicotinic receptors
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号