Abstract: | Sex allocation theory predicts that mating frequency and long‐term sperm storage affect the relative allocation to male and female function in simultaneous hermaphrodites. We examined the effect of mating frequency on male and female reproductive output (number of sperm delivered and eggs deposited) and on the resources allocated to the male and female function (dry mass, nitrogen and carbon contents of spermatophores and eggs) in individuals of the simultaneous hermaphrodite land snail Arianta arbustorum. Similar numbers of sperm were delivered in successive copulations. Consequently, the total number of sperm transferred increased with increasing number of copulations. In contrast, the total number of eggs produced was not influenced by the number of copulations. Energy allocation to gamete production expressed as dry mass, nitrogen or carbon content was highly female‐biased (>95% in all estimates). With increasing number of copulations the relative nitrogen allocation to the male function increased from 1.7% (one copulation) to 4.7% (three copulations), but the overall reproductive allocation remained highly female‐biased. At the individual level, we did not find any trade‐off between male and female reproductive function. In contrast, there was a significant positive correlation between the resources allocated to the male and female function. Snails that delivered many sperm also produced a large number of eggs. This finding contradicts current theory of sex allocation in simultaneous hermaphrodites. |