首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Agonist-dependent Endocytosis of γ-Aminobutyric Acid Type A (GABAA) Receptors Revealed by a γ2(R43Q) Epilepsy Mutation
Authors:Severine Chaumont  Caroline André  David Perrais  Eric Boué-Grabot  Antoine Taly  Maurice Garret
Abstract:GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.
Keywords:GABA Receptors  Neurobiology  Neurological Diseases  Receptor Endocytosis  Trafficking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号