首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altitudinal Change in LAI and Stand Leaf Biomass in Tropical Montane Forests: a Transect Study in Ecuador and a Pan-Tropical Meta-Analysis
Authors:Gerald Moser  Dietrich Hertel  Christoph Leuschner
Institution:1.Plant Ecology, Albrecht von Haller Institute for Plant Sciences,University of G?ttingen,G?ttingen,Germany
Abstract:Abstract Leaf area index (LAI) is a key parameter controlling plant productivity and biogeochemical fluxes between vegetation and the atmosphere. Tropical forests are thought to have comparably high LAIs; however, precise data are scarce and environmental controls of leaf area in tropical forests are not understood. We studied LAI and stand leaf biomass by optical and leaf mass-related approaches in five tropical montane forests along an elevational transect (1,050–3,060 m a.s.l.) in South Ecuador, and conducted a meta-analysis of LAI and leaf biomass data from tropical montane forests around the globe. Study aims were (1) to assess the applicability of indirect and direct approaches of LAI determination in tropical montane forests, (2) to analyze elevation effects on leaf area, leaf mass, SLA, and leaf lifespan, and (3) to assess the possible consequences of leaf area change with elevation for montane forest productivity. Indirect optical methods of LAI determination appeared to be less reliable in the complex canopies than direct leaf mass-related approaches based on litter trapping and a thorough analysis of leaf lifespan. LAI decreased by 40–60% between 1,000 and 3,000 m in the Ecuador transect and also in the pan-tropical data set. This decrease indicates that canopy carbon gain, that is, carbon source strength, decreases with elevation in tropical montane forests. Average SLA decreased from 88 to 61 cm2 g−1 whereas leaf lifespan increased from 16 to 25 mo between 1,050 and 3,060 m in the Ecuador transect. In contrast, stand leaf biomass was much less influenced by elevation. We conclude that elevation has a large influence not only on the leaf traits of trees but also on the LAI of tropical montane forests with soil N (nitrogen) supply presumably being the main controlling factor.
Keywords:elevation gradient  LAI  leaf biomass  leaf lifespan  leaf litter production  specific leaf area  tropical montane forest
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号