首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of axonemal Mg2+-ATPase from Paramecium cilia: effects of Ca2+ and cyclic nucleotides
Authors:S M Travis  D L Nelson
Institution:Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53706.
Abstract:Ciliary activity is regulated by Ca2+ and cyclic nucleotides, but the molecular mechanisms of the regulation are unknown. We have tested the ability of Ca2+ and cyclic nucleotides to alter ciliary Mg2+-ATPase or to stimulate phosphorylation of axonemal dynein. Mg2+-ATPase activity in cilia and axonemes from Paramecium was stimulated 2-fold by micromolar Ca2+, but this Ca2+ sensitivity was lost upon solubilization of the dyneins from the axoneme. The Ca2+-sensitive component of ciliary Mg2+-ATPase activity was inhibited by the dynein inhibitors vanadate and Zn2+, but was insensitive to the calmodulin antagonists calmidazolium and melittin. Dynein activity in the high-salt extract from axonemes was also insensitive to calmidazolium. Calmodulin did not sediment with 22 S or 12 S dyneins on sucrose gradients containing Ca2+, but it did sediment in the region from 19 S to 14 S. Mg2+-ATPase activity in ciliary fractions was unaltered in the presence of cAMP or cGMP. However, polypeptides associated with the 22 S and 12 S dyneins, as well as proteins of 19 S, 15 S, and 8 S, were substrates for endogenous ciliary kinases. High molecular weight polypeptides that sedimented at 22 S and 19 S were phosphorylated in a cyclic nucleotide-stimulated manner.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号