首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Snake alpha-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor Is conserved
Authors:Takacs Z  Wilhelmsen K C  Sorota S
Institution:Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA. zoltan@zoltantakacs.com
Abstract:Evolutionary success requires that animal venoms are targeted against phylogenetically conserved molecular structures of fundamental physiological processes. Species producing venoms must be resistant to their action. Venoms of Elapidae snakes (e.g., cobras, kraits) contain alpha-neurotoxins, represented by alpha-bungarotoxin (alpha-BTX) targeted against the nicotinic acetylcholine receptor (nAChR) of the neuromuscular junction. The model which presumes that cobras (Naja spp., Elapidae) have lost their binding site for conspecific alpha-neurotoxins because of the unique amino acid substitutions in their nAChR polypeptide backbone per se is incompatible with the evolutionary theory that (1) the molecular motifs forming the alpha-neurotoxin target site on the nAChR are fundamental for receptor structure and/or function, and (2) the alpha-neurotoxin target site is conserved among Chordata lineages. To test the hypothesis that the alpha-neurotoxin binding site is conserved in Elapidae snakes and to identify the mechanism of resistance against conspecific alpha-neurotoxins, we cloned the ligand binding domain of the Egyptian cobra (Naja haje) nAChR alpha subunit. When expressed as part of a functional Naja/mouse chimeric nAChR in Xenopus oocytes, this domain confers resistance against alpha-BTX but does not alter responses induced by the natural ligand acetylcholine. Further mutational analysis of the Naja/mouse nAChR demonstrated that an N-glycosylation signal in the ligand binding domain that is unique to N. haje is responsible for alpha-BTX resistance. However, when the N-glycosylation signal is eliminated, the nAChR containing the N. haje sequence is inhibited by alpha-BTX with a potency that is comparable to that in mammals. We conclude that the binding site for conspecific alpha-neurotoxin in Elapidae snakes is conserved in the nAChR ligand binding domain polypeptide backbone per se. This conclusion supports the hypothesis that animal toxins are targeted against evolutionarily conserved molecular motifs. Such conservation also calls for a revision of the present model of the alpha-BTX binding site. The approach described here can be used to identify the mechanism of resistance against conspecific venoms in other species and to characterize toxin-receptor coevolution.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号