首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Serum starvation improves transient transfection efficiency in differentiating embryonic stem cells
Authors:Eric J Wallenstein  Jeffrey Barminko  Rene S Schloss  Martin L Yarmush
Institution:Dept. of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
Abstract:Control of genetic expression is a critical issue in the field of stem cell biology, where determining a cell fate or reprogramming adult somatic cells into pluripotent cells has become a common experimental practice. In turn, for these cells to have therapeutic clinical potential, techniques for controlling gene expression are needed that minimizes or eliminates the risk of oncogenesis and mutagenesis. Possible routes for achieving this outcome could come in the form of a transient nonviral gene delivery system. In this study, we improved the efficiency of transient gene delivery to differentiating murine embryonic stem (ES) cells via serum starvation for 3 days before transfection. The transient expression of a constitutively‐controlled plasmid increased from ~50% (replated control) to ~83% when transfected after 3 days of serum starvation but decreased to ~28% when transfected after 3 days in normal high serum‐containing media. When probed with a liver‐specific reporter, Cyp7A1, expression increased from ~1.4% (replated control) to ~3.7% when transfected after 3 days of serum starvation but decreased to ~0.7% when transfected after 3 days in high serum‐containing media. Cy3‐tagged oligonucleotides were used to rapidly quantify DNA uptake and predict ultimate transfection efficiency. This study suggests that modifications in media serum levels before transfection can have a profound effect on improving nonviral gene delivery. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010
Keywords:serum deprivation  stem cells  gene delivery  Cyp7A1  hepatocyte
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号