首页 | 本学科首页   官方微博 | 高级检索  
     


The photorelease of nitrogen monoxide (NO) from pentacyanonitrosyl coordination compounds of group 8 metals.
Authors:Mariela Videla  Silvia E Braslavsky  José A Olabe
Affiliation:Max-Planck-Institut für Bioanorganische Chemie (formerly Strahlenchemie), Postfach 101365, D-45413, Mülheim an der Ruhr, Germany.
Abstract:The photodetachment of NO from [M(II)(CN)5NO]2- with M = Fe, Ru, and Os, upon laser excitation at various wavelengths (355, 420, and 480 nm) was followed by various techniques. The three complexes showed a wavelength-dependent quantum yield of NO production Phi(NO), as measured with an NO-sensitive electrode, the highest values corresponding to the larger photon energies. For the same excitation wavelength the decrease of Phi(NO) at 20 degrees C in the order Fe > Ru > Os, is explained by the increasing M-N bond strength and inertness of the heavier metals. Transient absorption data at 420 nm indicate the formation of the [M(III)(CN)5H2O]2- species in less than ca. 1 micros for M = Fe and Ru. The enthalpy content of [Fe(III)(CN)5H2O]2- with respect to the parent [Fe(II)(CN)5NO]2- state is (190 +/- 20) kJ mol(-1), as measured by laser-induced optoacoustic spectroscopy (LIOAS) upon excitation at 480 nm. The production of [Fe(III)(CN)5H2O]2- is concomitant with an expansion of (8 +/- 3) ml mol(-1) consistent with an expansion of the water bound through hydrogen bonds to the CN ligands plus the difference between NO release into the bulk and water entrance into the first coordination sphere. The activated process, as indicated by the relatively strong temperature dependence of the Phi(NO) values and by the temperature dependence of the appearance of the [Fe(III)(CN)5H2O]2- species, as determined by LIOAS, is attributed to NO detachment in less than ca. 100 ns from the isonitrosyl (ON) ligand (MS1 state).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号