首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Preferential attachment of membrane glycoproteins to the cytoskeleton at the leading edge of lamella
Authors:D F Kucik  S C Kuo  E L Elson  M P Sheetz
Institution:Department of Cell Biology and Physiology, Duke University Medical Center, Durham, North Carolina 27710.
Abstract:The active forward movement of cells is often associated with the rearward transport of particles over the surfaces of their lamellae. Unlike the rest of the lamella, we found that the leading edge (within 0.5 microns of the cell boundary) is specialized for rearward transport of membrane-bound particles, such as Con A-coated latex microspheres. Using a single-beam optical gradient trap (optical tweezers) to apply restraining forces to particles, we can capture, move and release particles at will. When first bound on the central lamellar surface, Con A-coated particles would diffuse randomly; when such bound particles were brought to the leading edge of the lamella with the optical tweezers, they were often transported rearward. As in our previous studies, particle transport occurred with a concurrent decrease in apparent diffusion coefficient, consistent with attachment to the cytoskeleton. For particles at the leading edge of the lamella, weak attachment to the cytoskeleton and transport occurred with a half-time of 3 s; equivalent particles elsewhere on the lamella showed no detectable attachment when monitored for several minutes. Particles held on the cell surface by the laser trap attached more strongly to the cytoskeleton with time. These particles could escape a trapping force of 0.7 X 10(-6) dyne after 18 +/- 14 (sd) s at the leading edge, and after 64 +/- 34 (SD) s elsewhere on the lamella. Fluorescent succinylated Con A staining showed no corresponding concentration of general glycoproteins at the leading edge, but cytochalasin D-resistant filamentous actin was found at the leading edge. Our results have implications for cell motility: if the forces used for rearward particle transport were applied to a rigid substratum, cells would move forward. Such a mechanism would be most efficient if the leading edge of the cell contained preferential sites for attachment and transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号