首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Large‐scale comparison of protein essential dynamics from molecular dynamics simulations and coarse‐grained normal mode analyses
Authors:Aqeel Ahmed  Saskia Villinger  Holger Gohlke
Institution:1. Department of Biological Sciences, Molecular Bioinformatics Group, Goethe‐University, Frankfurt, Germany;2. Current address: Department of Biochemistry & Molecular Biophysics, The University of Arizona, Tucson, Arizona;3. Current address: Department of NMR‐based Structural Biology, Max‐Planck‐Institute for Biophysical Chemistry, G?ttingen, Germany;4. Department of Mathematics and Natural Sciences, Heinrich‐Heine‐University, Düsseldorf, Germany
Abstract:A large‐scale comparison of essential dynamics (ED) modes from molecular dynamic simulations and normal modes from coarse‐grained normal mode methods (CGNM) was performed on a dataset of 335 proteins. As CGNM methods, the elastic network model (ENM) and the rigid cluster normal mode analysis (RCNMA) were used. Low‐frequency normal modes from ENM correlate very well with ED modes in terms of directions of motions and relative amplitudes of motions. Notably, a similar performance was found if normal modes from RCNMA were used, despite a higher level of coarse graining. On average, the space spanned by the first quarter of ENM modes describes 84% of the space spanned by the five ED modes. Furthermore, no prominent differences for ED and CGNM modes among different protein structure classes (CATH classification) were found. This demonstrates the general potential of CGNM approaches for describing intrinsic motions of proteins with little computational cost. For selected cases, CGNM modes were found to be more robust among proteins that have the same topology or are of the same homologous superfamily than ED modes. In view of recent evidence regarding evolutionary conservation of vibrational dynamics, this suggests that ED modes, in some cases, might not be representative of the underlying dynamics that are characteristic of a whole family, probably due to insufficient sampling of some of the family members by MD. Proteins 2010. © 2010 Wiley‐Liss, Inc.
Keywords:RCNMA  ENM  intrinsic motion  conformational change  evolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号