首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: role of a p53 family protein
Authors:Tokumoto Y M  Tang D G  Raff M C
Institution:Medical Research Council Laboratory for Molecular Cell Biology, Cell Biology Unit, Department of Biology, University College London, London WC1E 6BT, UK.
Abstract:Both thyroid hormone (TH) and retinoic acid (RA) induce purified rat oligodendrocyte precursor cells in culture to stop division and differentiate. We show that these responses are blocked by the expression of a dominant-negative form of p53. Moreover, both TH and RA cause a transient, immediate early increase in the same 8 out of 13 mRNAs encoding intracellular cell cycle regulators and gene regulatory proteins, but only if protein synthesis is inhibited. Platelet-derived growth factor (PDGF) withdrawal also induces these cells to differentiate, but we show that the intracellular mechanisms involved are different from those involved in the hormone responses: the changes in cell cycle regulators differ, and the differentiation induced by PDGF withdrawal (or that which occurs spontaneously in the presence of PDGF) is not blocked by the dominant-negative p53. These results suggest that TH and RA activate the same intracellular pathway leading to oligodendrocyte differentiation, and that this pathway depends on a p53 family protein. Differentiation that occurs independently of TH and RA apparently involves a different pathway. It is likely that both pathways operate in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号