首页 | 本学科首页   官方微博 | 高级检索  
     


Sensitized photoinactivation of minigramicidin channels in bilayer lipid membranes
Authors:Elena A. Dutseva  Elena A. Kotova  Ulrich Koert
Affiliation:a Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
b Fachbereich Chemie, Philipps-Universitat, Marburg, Germany
Abstract:The method of sensitized photoinactivation based on the photosensitized damage of gramicidin A (gA) molecules was applied here to study ionic channels formed by minigramicidin (the 11-residue analogue of gramicidin A) in a planar bilayer lipid membrane (BLM) of different thickness. Irradiation of BLM with a single flash of visible light in the presence of a photosensitizer (aluminum phthalocyanine or Rose Bengal) generating singlet oxygen provoked a decrease in the minigramicidin-induced electric current across BLM, the kinetics of which had the characteristic time of several seconds, as observed with gA. For gA, there is good correlation between the characteristic time of photoinactivation and the single-channel lifetime. In contrast to the covalent dimer of gA characterized by extremely long single-channel lifetime and the absence of current relaxation upon flash excitation, the covalent head-to-head dimer of minigramicidin displayed the flash-induced current decrease with the kinetics being strongly dependent on the membrane thickness. The current decrease became slower both upon increasing the concentration of the minigramicidin covalent dimer and upon including cholesterol in the membrane composition. These data in combination with the quadratic dependence of the current on the peptide concentration can be rationalized by hypothesizing that the macroscopic current across BLM measured at high concentrations of the peptide is provided by dimers of minigramicidin covalent dimers in the double β5.7-helical conformation having the lifetime of about 0.4 s, while single channels with the lifetime of 0.01 s, observed at a very low peptide concentration, correspond to the single-stranded β6.3-helical conformation. Alternatively the results can be explained by clustering of channels at high concentrations of the minigramicidin covalent dimer.
Keywords:BLM, bilayer lipid membrane   gA, gramicidin A   AlPcS3, aluminum trisulfophthalocyanine   DPhPC, diphytanoylphosphatidylcholine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号