首页 | 本学科首页   官方微博 | 高级检索  
     


A semiparametric estimation procedure of dependence parameters in multivariate families of distributions
Authors:GENEST, C.   GHOUDI, K.   RIVEST, L.-P.
Affiliation:Département de mathématiques et de statistique, Université Laval, Québec, Canada G1K 7P4
Abstract:
This paper investigates the properties of a semiparametric methodfor estimating the dependence parameters in a family of multivariatedistributions. The proposed estimator, obtained as a solutionof a pseudo-likelihood equation, is shown to be consistent,asymptotically normal and fully efficient at independence. Anatural estimator of its asymptotic variance is proved to beconsistent. Comparisons are made with alternative semiparametricestimators in the special case of Clayton's model for associationin bivariate data.
Keywords:Asymptotic theory    Clayton's bivariate family    Kendall's tau    Multivariate rank statistic    Pseudo-likelihood    Semiparametric estimation
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号