首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of multimethyl-branched fatty acids by avian and mammalian fatty acid synthetase and its regulation by malonyl-CoA decarboxylase in the uropygial gland
Authors:J S Buckner  P E Kolattukudy  L Rogers
Affiliation:Department of Agricultural Chemistry and the Program in Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164 USA
Abstract:Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.
Keywords:To whom all correspondence should be sent.
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号