首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stochastic host-parasite interaction models
Authors:Julian Herbert  Valerie Isham
Institution:(1) Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, UK, GB
Abstract: We contribute to the discussion of causes and effects of aggregation (overdispersion) of macroparasite counts, focussing particularly upon the effects of clumped infections and parasite-induced host mortality. The simple nonlinear stochastic model for the evolution of the parasite load of a single host, investigated in Isham (1995), is extended to allow three parasite stages (larval, mature and offspring), and to allow durations of these stages to be non-exponentially distributed. As in the earlier work, exact algebraic results are possible, providing insight into the aggregation mechanisms, as long as the only source of interaction between host and parasites is an excess host mortality linearly related to the parasite load. Results are obtained on the distribution of parasite lad and on host survival. In particular, although parasite-induced host mortality is usually thought of as a process that reduces parasite aggregation (Anderson and Gordon 1982), it is shown that, for this model, parasite-induced host mortality cannot cause the index of dispersion to fall below unity. Host heterogeneity and disease control are also discussed. An approximation based on moment assumptions appropriate to a specially-constructed multivariate negative binomial distribution is proposed. This approximation, which is applicable to other processes, and an alternative based on the multivariate normal distribution are compared with exact results. Received: 17 December 1998 / Revised version: 2 June 1999
Keywords::   Epidemic model  Helminths  Parasite-induced mortality  Macroparasites  Moment closure approximations  Multivariate negative binomial distribution
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号