Microsurgery reveals regional capabilities for pattern reestablishment in somatic carrot embryos |
| |
Authors: | F M Schiavone R H Racusen |
| |
Affiliation: | Department of Botany, University of Maryland, College Park 20742. |
| |
Abstract: | ![]() The extent to which regions of a somatic embryo were committed to a particular developmental fate was explored by surgically removing portions of somatic embryos and observing patterns of regeneration. Through a variety of excisions that resulted in tissue slices ranging from less than 10% to nearly 90% of the original embryo mass, we observed only a few cases where such isolates completely abandoned preexisting patterns of organized growth. Instead, most subcultured portions of the embryonic axis restored all, or part of, a missing complement of the organism. At the shoot apex, a single lost cotyledon was replaced by new cotyledonary structures, although these usually occurred as multiple pairs of cotyledons. If both cotyledons were removed, secondary axes, each with its own cotyledons, typically formed at the embryo midlength. When embryos were divided into shoot and root pieces, the shoot pole usually regenerated a new root, while the original root and rapidly elongated and matured days earlier than uncut controls. Surprisingly, cotyledon regeneration from excised root sections occurred at much greater frequency when the root piece comprised only 10-25% of the embryo mass; larger portions of the root pole rarely produced recognizable shoot structures. These studies indicate that several discrete regions of the embryo are committed to specific types of patterned growth, and that continuity between certain of these regions is required for the maintenance of axial polarity. |
| |
Keywords: | |
|
|