Characterization of the methotrexate transport defect in a resistant L1210 lymphoma cell line |
| |
Authors: | John I. Mc Cormick Sandra S. Susten James H. Freisheim |
| |
Affiliation: | Department of Biological Chemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267 U.S.A. |
| |
Abstract: | L1210/R81 lymphoma cells are resistant to methotrexate (MTX) by virtue of a 35-fold elevation in dihydrofolate reductase and an inability to transport the folate antagonist drug effectively. In a phosphate-containing buffer there was little or no influx into the resistant cells at either 1 or 50 μm MTX. Replacement of this buffer with a 4-(2-hydroxyethyl)-1-piperazine-N′-2-ethanesulfonic acid-Mg2+ system resulted in an apparent influx of MTX into the resistant cells. Under these conditions, L1210/R81 cells achieved an apparent steady state at an extracellular MTX concentration of 50 μm. The apparent steady-state level of 5 nmol cells was well below the intracellular level of dihydrofolate reductase (45 nmol/109 cells). Efflux experiments at the apparent steady state indicated that 60% of the MTX was very rapidly removed from the cells by washing. Over the range of the experiment a further 20% of the MTX effluxed more slowly (). The apparent influx into the resistant cells at 5 μm MTX was inhibited 13% by sodium azide (100 μm) and initially stimulated, then inhibited, by p-chloromercuriphenylsulfonic acid (100 μm). 5-Methyltetrahydrofolate (100 μm) had little effect on the process while aminopterin (100 μm) was inhibitory (68%). Kt and V values of 2 × 10?5m and 0.31 nmol cells/min, respectively, were determined for the apparent influx in cells. Comparison of apparent MTX influx in the resistant cells with MTX transport in the sensitive cells indicates profound differences in the two processes. The evidence suggests that the apparent influx in the former cell line may consist of MTX binding to the cell membrane together with a small degree of MTX influx into the intracellular compartment. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|