首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Subunit composition of a high molecular weight oligomer: Limulus polyphemus hemocyanin
Authors:Michael Brenowitz  Celia Bonaventura  Joseph Bonaventura  Elisabetta Gianazza
Institution:1. Department of Biochemistry and Marine Biomedical Center, Duke University Marine Laboratory, Beaufort, North Carolina 28516 USA;2. Department of Biochemistry, University of Milano, Via Celoria 2, Milano 20133, Italy
Abstract:The hemocyanin of Limulus polyphemus is a 48-subunit aggregate. This 3.3 × 106-dalton oligomer is composed of structurally and functionally heterogeneous subunits. Using polyacrylamide electrophoresis J. Markl, A. Markl, W. Schartau, and B. Linzen (J. Comp. Physiol. Ser. B130,283–292, 1979) observed 12 bands; while using immunoelectrophoresis, M. Hoylaerts, G. Preaux, R. Witters, and R. Lontie (Arch. Int. Physiol. Biochem.87, 417–418, 1979) and J. Lamy, J. Lamy, J. Weill, J. Bonaventura, C. Bonaventura, and M. Brenowitz. (Arch. Biochem. Biophys.196, 324–339, 1979) observed 8 subunits. To proceed with an analysis of subunit roles in assembly it is first necessary to determine the number of distinct subunits. Refinement of the chromatographic separation procedures has led to the isolation of 8 immunologically distinct subunits as well as additional charge isomers which cannot be distinguished immunologically. Alkaline electrophoresis revealed 15 bands and isoelectric focusing up to 17. On the basis of extensive control experiments, including composit acrylamide-agarose immunoelectrophoresis and checks for conformational isomers, aggregation, proteolysis, and other types of degradation, we conclude that the electrophoretic heterogeneity of immunologically identical subunits is not artifactual. We have extended the nomenclature used by Lamy et al. (1979) to include the electrophoretic heterogeneity by using primes (′) to denote electrophoretically distinguishable subunits which are immunologically identical. A number of patterns have become apparent by correlating the results obtained by the different techniques. For example, immunologically pure subunit II, which shows 3 bands on alkaline electrophoresis, is in fact a mixture of electrophoretically distinct subunits II, II′, II″. Except for subunits II, II′, and II″ immunoelectrophoretically identical subunits are typically homogeneous on sodium dodecyl sulfate-gels. However, slight differences in the apparent molecular weight are observed on high-resolution gels between immunologically unrelated subunits. The immunological identity and electrophoretic differences suggest that the charge isomers which are immunologically identical have similar antigenic surfaces. If a charge substitution is not in a critical location, we would expect the electrophoretically distinct but immunologically identical subunits to have identical assembly roles. Comparison of the results for Limulus hemocyanin with the hemocyanin of related species Eurypelma californicum and Androctanus australis, which have 7 and 8 immunologically distinct subunits, respectively, suggests that the calcium-mediated aggregation from 24 to 48 subunits of Limulus does not require more extensive subunit complexity.
Keywords:To whom reprint requests and correspondence should be directed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号