首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Host recognition by Rhinocyllus conicus of floral scents from invasive and threatened thistles
Authors:Park  Ikju  Thompson  David C
Institution:1.Department of Entomology and Nematology, University of California, 367 Briggs Hall, Davis, CA, 95616, USA
;2.Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, MSC 3BE, Skeen Hall, Rm N141, Las Cruces, NM, 88003, USA
;
Abstract:

One of the main obstacles of classical biological control is that biological control organisms cannot be recalled once they are released in nature. It is particularly true for the flowerhead weevil, Rhinocyllus conicus Frölich, which was released as a biological control organism for the invasive musk thistle, Carduus nutans L. (MT). While weevils successfully suppressed introduced populations of musk thistles and other invasive thistle species, non-target attacks have been reported on multiple native thistles including federally listed threatened and endangered (T&E) thistle species. To investigate the foraging behavior of female weevils on invasive and native thistles, we examined volatile organic compounds (VOCs) emitted from MT and a T&E plant species, Sacramento Mountains thistle, Cirsium vinaceum Wooton & Standley (SMT) in the Lincoln National Forest, New Mexico. We used a dynamic headspace volatile collection system and gas chromatography-mass spectrometry to compare volatile profiles between MT and SMT. Female weevils reacted to 7 electrophysiologically active chemical compounds in the blends based on gas chromatography-electroantennography. The behavioral response of female weevils was indifferent when VOCs from both thistles were offered in y-tube olfactometry experiments. Yet, they preferred VOCs collected from MT to purified air. The searching time of female weevils was longer to VOCs collected from SMT over controls. Investigating signals during the initial host recognition of released biological control organisms may open new opportunities to reduce non-target attacks on T&E plant species.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号