首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Focus on Ethylene: Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies
Authors:María José García  Francisco Javier Romera  Carlos Lucena  Esteban Alcántara  Rafael Pérez-Vicente
Institution:Department of Botany, Ecology, and Plant Physiology (M.J.G., R.P.-V.) and;Department of Agronomy (F.J.R., C.L., E.A.), University of Córdoba, 14071 Cordoba, Spain
Abstract:To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed.When plants suffer from a mineral nutrient deficiency, they develop morphological and physiological responses (mainly in their roots) aimed to facilitate the uptake and mobilization of the limiting nutrient. After the nutrient has been acquired in enough quantity, these responses need to be switched off to avoid toxicity and conserve energy. In recent years, different plant hormones (e.g. ethylene, auxin, cytokinins, jasmonic acid, abscisic acid, brassinosteroids, GAs, and strigolactones) have been implicated in the regulation of these responses (Romera et al., 2007, 2011, 2015; Liu et al., 2009; Rubio et al., 2009; Kapulnik et al., 2011; Kiba et al., 2011; Iqbal et al., 2013; Zhang et al., 2014).Before the 1990s, there were several publications relating ethylene and nutrient deficiencies (cited in Lynch and Brown 1997] and Romera et al. 1999]) without establishing a direct implication of ethylene in the regulation of nutrient deficiency responses. In 1994, Romera and Alcántara (1994) published an article in Plant Physiology suggesting a role for ethylene in the regulation of Fe deficiency responses. In 1999, Borch et al. (1999) showed the participation of ethylene in the regulation of P deficiency responses. Since then, evidence has been accumulating in support of a role for ethylene in the regulation of both Fe (Romera et al., 1999, 2015; Waters and Blevins, 2000; Lucena et al., 2006; Waters et al., 2007; García et al., 2010, 2011, 2013, 2014; Yang et al., 2014) and P deficiency responses (Kim et al., 2008; Lei et al., 2011; Li et al., 2011; Nagarajan and Smith, 2012; Wang et al., 2012, 2014c). Both Fe and P may be poorly available in most soils, and plants develop similar responses under their deficiencies (Romera and Alcántara, 2004; Zhang et al., 2014). More recently, a role for ethylene has been extended to other deficiencies, such as K (Shin and Schachtman, 2004; Jung et al., 2009; Kim et al., 2012), S (Maruyama-Nakashita et al., 2006; Wawrzyńska et al., 2010; Moniuszko et al., 2013), and B (Martín-Rejano et al., 2011). Ethylene has also been implicated in both N deficiency and excess (Tian et al., 2009; Mohd-Radzman et al., 2013; Zheng et al., 2013), and its participation in Mg deficiency has been suggested (Hermans et al., 2010).In this update, we will review the information supporting a role for ethylene in the regulation of different nutrient deficiency responses. For information relating ethylene to other aspects of plant mineral nutrition, such as N2 fixation and responses to excess of nitrate or essential heavy metals, the reader is referred to other reviews (for review, see Maksymiec, 2007; Mohd-Radzman et al., 2013; Steffens, 2014).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号