Abstract: | Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species’ tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg–1 leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment.Manganese (Mn) is an essential element for plant growth, but its availability differs greatly in space and time, depending largely on the nature and amount of Mn minerals present and on the soil’s pH and redox potential. With an elaborate chemistry, Mn forms complexes with many organic and inorganic ligands. In soils, Mn has three common oxidation states, Mn(II), Mn(III), and Mn(IV), which form hydrated oxides of mixed valency; Mn is present also as numerous carbonates, silicates, sulfates, and phosphates (Lindsay, 1979). Cationic Mn2+ is the most common form readily absorbed by plant roots (Clarkson, 1988). The toxicity of Mn occurs in acid or waterlogged soils high in Mn minerals.Many plants have mechanisms to accommodate the large differences in Mn2+ in soils. At low available Mn, uptake is increased in some Poaceae by excretion of phytosiderophores of the mugineic acid family (Takahashi et al., 2003), with root phytase exudation also potentially important for acquisition of Mn when Mn availability is limited (George et al., 2014). Mechanisms in other plants include the ability of roots to decrease rhizosphere pH or excrete organic ligands (Neumann and Romheld, 2012; Lambers et al., 2015). However, the relative importance of the many complexes on Mn uptake remains unclear. Toxicity results from high Mn in leaf cell walls (Wissemeier et al., 1992; Wissemeier and Horst, 1992) and through adverse effects on symplastic proteins (Führs et al., 2008). Many plants have mechanisms that limit the adverse effects of high Mn2+ in soils, with numerous ligands involved in its translocation and that of other essential cations (Haydon and Cobbett, 2007). Edwards and Asher (1982) classified a range of crop and pasture species based on their ability to deal with high Mn as those that (1) limit Mn from entering the roots, (2) retain Mn in the roots, or (3) tolerate high Mn in the shoots. At the extreme are plants that hyperaccumulate more than 10,000 mg Mn kg–1 on a dry mass (DM) basis in foliar tissues without metabolic damage (Fernando et al., 2013; van der Ent et al., 2013). Based on 15% DM of leaves, this equates to 12.1 mmol kg–1 on a fresh mass (FM) basis. Celosia argentia, a species adapted to growth on Mn-contaminated mine tailings, accumulated more than 20,000 mg kg–1 Mn in leaves (Liu et al., 2014). Tolerance of high Mn in shoots of some Mn hyperaccumulators has been found to occur through binding to ligands (such as malate or citrate) or sequestration in the vacuole (Fernando et al., 2010).Characteristic symptoms of Mn toxicity include chlorotic and distorted leaves with small necrotic lesions. These lesions have been shown in cowpea (Vigna unguiculata) to contain oxidized Mn and callose (Wissemeier et al., 1992), which forms as a reaction to high intracellular Ca (Kartusch, 2003). The necrotic lesions result mainly from oxidized phenolics (Wissemeier and Horst, 1992) and increased peroxidase activity in the apoplast (Horst et al., 1999). With a critical solution concentration for toxicity (10% growth reduction) of no more than 9 µm Mn, Edwards and Asher (1982) found that cotton (Gossypium hirsutum), bean (Phaseolus vulgaris), cowpea, and soybean (Glycine max) were the most sensitive species of 13 crop and pasture plants grown for 18 to 31 d at constant Mn in solution culture. By contrast, the critical concentration for sunflower (Helianthus annuus) was 7 times higher at 65 µm Mn. Sunflower was the first species found to tolerate high Mn through its sequestration in the trichomes on stems, petioles, and leaves (Blamey et al., 1986). The suspected accumulation of Mn was confirmed using wavelength dispersive x-ray spectroscopy with darkening inferred as due to insoluble higher oxides of Mn. Similarly, high Mn results in darkened trichomes of cucumber (Cucumis sativus) leaves due to oxidized Mn, as shown by the colorimetric benzidine test (Horiguchi, 1987). Watermelon (Citrullus lanatus; Elamin and Wilcox, 1986b), but not muskmelon (Citrullus melo; Elamin and Wilcox, 1986a), grown at high Mn also develops small dark spots around the leaf trichomes. Other species that sequester Mn in the trichomes include common nettle (Urtica dioica; Hughes and Williams, 1988) and Alyssum murale, a Ni hyperaccumulator (Broadhurst et al., 2009; McNear and Küpper, 2014). Thus, some plants in four families, Asteraceae, Cucurbitaceae, Urticaceae, and Brassicaceae, tolerate high Mn in shoots through Mn sequestration in or around the trichomes. The mechanisms may differ, however, because the high Mn present during development of common nettle stinging hairs decreases as plants mature (Hughes and Williams, 1988).Recently developed techniques, including those based on synchrotron radiation, allow investigations of the distribution and speciation of Mn in planta, with most research to date focused on Mn hyperaccumulators (Fernando et al., 2013). For example, Fernando et al. (2010) used x-ray absorption near-edge spectroscopy (XANES) to confirm the widely accepted view that Mn(II) predominates in seven Mn hyperaccumulators. Synchrotron-based x-ray fluorescence microspectroscopy (µ-XRF) was used by McNear and Küpper (2014) to show that the basal region of trichomes of A. murale plants grown at no more than 10 µm Mn contained Mn(II) complexed with phosphate. At 50 µm Mn in solution, however, the increased amount of Mn that had accumulated around the trichomes was present as Mn(III). Few studies, however, have used synchrotron-based techniques to investigate the mechanisms of Mn toxicity and tolerance in agronomic species despite their importance for food production in regions where soils are acidic or intermittently waterlogged. One study on cowpea, with a critical toxicity concentration of only 2 µm Mn (Edwards and Asher, 1982), has shown an accumulation of Mn-citrate in the root cap and associated mucigel within 5 min of exposure to 150 µm Mn (Kopittke et al., 2013).This study aimed to determine the distribution and speciation of Mn in fresh roots, stems, and leaves of four crop species, soybean, white lupin (Lupinus albus), narrow-leafed lupin (Lupinus angustifolius), and sunflower, which differ in tolerance to high Mn. It was hypothesized that Mn distribution and speciation would differ between Mn-sensitive soybean and the three other species. Furthermore, we considered it likely that the Mn tolerance mechanism of sunflower would differ from those of the two lupin species, which do not have darkened trichomes when grown at high Mn. |