首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs
Authors:Sivolob Andrei  Prunell Ariel
Institution:Institut Jacques Monod, Centre National de la Recherche Scientifique, et Université Denis Diderot Paris 7, 2 place Jussieu, 75251 Paris Cédex 05, France.
Abstract:A DNA sequence-dependent nucleosome structural and dynamic polymorphism was recently uncovered through topoisomerase I relaxation of mononucleosomes on two homologous approximately 350-370 bp DNA minicircle series, one originating from pBR322, the other from the 5S nucleosome positioning sequence. Whereas both pBR and 5S nucleosomes had access to the closed, negatively crossed conformation, only the pBR nucleosome had access to the positively crossed conformation. Simulation suggested this discrepancy was the result of a reorientation of entry/exit DNAs, itself proposed to be the consequence of specific DNA untwistings occurring in pBR nucleosome where H2B N-terminal tails pass between the two gyres. The present work investigates the behavior of the same two nucleosomes after binding of linker histone H5, its globular domain, GH5, and engineered H5 C-tail deletion mutants. Nucleosome access to the open uncrossed conformation was suppressed and, more surprisingly, the ability of 5S nucleosome to positively cross was largely restored. This, together with the paradoxical observation of a less extensive crossing in the negative conformation with GH5 than without, favored an asymmetrical location of the globular domain in interaction with the central gyre and only entry (or exit) DNA, and raised the possibility of the domain physical rotation as a mechanism assisting nucleosome fluctuation from one conformation to the other. Moreover, both negative and positive conformations showed a high degree of loop conformational flexibility in the presence of the full-length H5 C-tail, which the simulation suggested to reflect the unique feature of the resulting stem to bring entry/exit DNAs in contact and parallel. The results point to the stem being a fundamental structural motif directing chromatin higher order folding, as well as a major player in its dynamics.
Keywords:DNA minicircles  DNA supercoiling  nucleosome polymorphism  nucleosome dynamics  linker histones
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号