首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Further Characterization of the Red Beet Plasma Membrane Ca-ATPase Using GTP as an Alternative Substrate
Authors:Williams L E  Schueler S B  Briskin D P
Institution:Department of Agronomy, University of Illinois, Urbana, Illinois 61801.
Abstract:The GTP-driven component of Ca2+ uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca2+-translocating ATPase and assess its utility as a probe for this transport system. Uptake of 45Ca2+ in the presence of GTP demonstrated similar properties to those previously observed for red beet plasma membrane vesicles utilizing ATP with respect to pH optimum, sensitivity to orthovanadate, dependence on Mg:substrate concentration and dependence on Ca2+ concentration. Calcium uptake in the presence of GTP was also strongly inhibited by erythrosin B, a potent inhibitor of the plant plasma membrane Ca2+-ATPase. Furthermore, after treatment with EGTA to remove endogenous calmodulin, the stimulation of 45Ca2+-uptake by exogenous calmodulin was nearly equivalent in the presence of either ATP or GTP. Taken together these results support the proposal that GTP-driven 45Ca2+ uptake represents the capacity of the plasma membrane Ca2+-translocating ATPase to utilize this nucleoside triphosphate as an alternative substrate. When plasma membrane vesicles were phosphorylated with γ-32P]-GTP, a rapidly turning over, 100 kilodalton phosphorylated peptide was observed which contained an acyl-phosphate linkage. While it is proposed that this peptide could represent the catalytic subunit of the plasma membrane Ca2+-ATPase, it is noted that this molecular weight is considerably lower than the 140 kilodalton size generally observed for plasma membrane Ca2+-ATPases present in animal cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号