Lung dosimetry of inhaled radon progeny in mice |
| |
Authors: | Akihiro Sakoda Yuu Ishimori Kosuke Fukao Kiyonori Yamaoka Takahiro Kataoka Fumihiro Mitsunobu |
| |
Affiliation: | 1. Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama, 708-0698, Japan 2. Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, 700-8558, Japan 3. Misasa Medical Center, Okayama University Hospital, 827 Yamada, Misasa-cho, Tohaku-gun, Tottori, 682-0192, Japan
|
| |
Abstract: | Biological response of exposure to radon progeny has long been investigated, but there are only few studies in which absorbed doses in lungs of laboratory animals were estimated. The present study is the first attempt to calculate the doses of inhaled radon progeny for mice. For reference, the doses for rats and humans were also computed with the corresponding models. Lung deposition of particles, their clearance, and energy deposition of alpha particles to sensitive tissues were systematically simulated. Absorbed doses to trachea and bronchi, bronchioles and terminal bronchioles, alveolar-interstitial regions, and whole lung were first provided as a function of monodisperse radon progeny particles with an equilibrium equivalent radon concentration of 1?Bq?m?3 (equilibrium factor, 0.4 and unattached fraction, 0.01). Based on the results, absorbed doses were then calculated for (1) a reference mine condition and (2) a condition previously used for animal experiments. It was found that the whole lung doses for mice, rats, and humans were 34.8, 20.7, and 10.7?nGy (Bq?m?3)?1?h?1 for the mine condition, respectively, while they were 16.9, 9.9, and 6.5?nGy (Bq?m?3)?1?h?1 for the animal experimental condition. In both cases, the values for mice are about 2 times higher than those for rats, and about 3 times higher than those for humans. Comparison of our data on rats and humans with those published in the literature shows an acceptable agreement, suggesting the validity of the present modeling for mice. In the future, a more sophisticated dosimetric study of inhaled radon progeny in mice would be desirable to demonstrate how anatomical, physiological, and environmental parameters can influence absorbed doses. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|