首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Effect of Fruit Load, Defoliation and Night Temperature on the Morphology of Pepper Flowers and on Fruit Shape
Authors:ALONI  B; PRESSMAN  E; KARNI  L
Institution:Department of Vegetable Crops, Institute of Field and Garden Crops, Agriculture Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, Israel
Abstract:The shape and regularity of bell pepper (Capsicum annuumL.)fruit are known to be determined at a very early stage of flowerdevelopment. Small, flattened fruit which are commonly parthenocarpicdevelop under low-temperatures (below 16 °C) from flowerswith enlarged ovaries. In such flowers self-pollination is notefficient because of the large distance between the stigma andstamens. Flower deformation of this kind is common during thewinter season. In the present study it was found that deformationsof flowers, similar to those found under low temperatures, wereinduced in 15 d by complete removal of fruit from plants growingunder night-time temperatures of 18 °C. Only flowers whichwere at the pre-anthesis stage at the time of fruit removalwere deformed by this treatment. Removal of leaves from thelower part of the plant (source leaves) partially reduced theeffect of fruit removal on the shape of the flowers and on subsequentfruit morphology. Fruit removal induced significant increasesin the concentrations of starch and reducing sugars, but notsucrose, in the flower buds. Likewise, flower buds of plantswhich grew under a night-time temperature of 12 °C containedmore carbohydrate than those which grew at 18 °C. Theseresults suggest that flower morphology in pepper is at leastpartly controlled by source-sink relationships. Assimilateswhich are normally transferred to developing fruit may be transported,upon fruit removal, to the flower buds which subsequently swell.A similar increase in assimilate translocation to flower budsmay occur under low temperatures, subsequently causing deformationof fruit.Copyright 1999 Annals of Botany Company Pepper, (Capsicum annuumL), flower shape, low temperatures, source-sink relationship, fruit shape, seeds, reducing sugars, sucrose, starch.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号