The Lipid Bilayer Modulates the Structure and Function of an ATP-binding Cassette Exporter |
| |
Authors: | Maria E. Zoghbi Rebecca S. Cooper Guillermo A. Altenberg |
| |
Affiliation: | From the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551 |
| |
Abstract: | ATP-binding cassette exporters use the energy of ATP hydrolysis to transport substrates across membranes by switching between inward- and outward-facing conformations. Essentially all structural studies of these proteins have been performed with the proteins in detergent micelles, locked in specific conformations and/or at low temperature. Here, we used luminescence resonance energy transfer spectroscopy to study the prototypical ATP-binding cassette exporter MsbA reconstituted in nanodiscs at 37 °C while it performs ATP hydrolysis. We found major differences when comparing MsbA in these native-like conditions with double electron-electron resonance data and the crystal structure of MsbA in the open inward-facing conformation. The most striking differences include a significantly smaller separation between the nucleotide-binding domains and a larger fraction of molecules with associated nucleotide-binding domains in the nucleotide-free apo state. These studies stress the importance of studying membrane proteins in an environment that approaches physiological conditions. |
| |
Keywords: | ABC transporter fluorescence resonance energy transfer (FRET) membrane bilayer multidrug transporter spectroscopy FRET LRET MsbA luminescence resonance energy transfer nanodisc |
|