首页 | 本学科首页   官方微博 | 高级检索  
     


NH(4)(+)-stimulated low-K(+) uptake is associated with the induction of H(+) extrusion by the plasma membrane H(+)-ATPase in sorghum roots under K(+) deficiency
Authors:Alvarez-Pizarro Juan Carlos  Gomes-Filho Enéas  Prisco José Tarquínio  Grossi-de-Sá Maria Fátima  de Oliveira-Neto Osmundo Brilhante
Affiliation:a Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Caixa Postal 6039, 60455-900 Fortaleza, Ceará, Brazil
b Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final WS, Asa Norte, 70770-900 Brasília, DF, Brazil
c Centro Universitário Unieuro, Av das Nações Trecho 0, Conjunto 5, Brasília, DF, Brazil
Abstract:The effect of external inorganic nitrogen and K+ content on K+ uptake from low-K+ solutions and plasma membrane (PM) H+-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.4 mM K+ and inorganic nitrogen as NO3-, NO3-/NH4+ or NH4+ and then starved of K+ for 24, 48 and 72 h. NH4+ in full nutrient solution significantly affected the uptake efficiency and accumulation of K+, and this effect was less pronounced at the high K+ concentration. In contrast, the translocation rate of K+ to the shoot was not altered. Depletion assays showed that plants grown with NH4+ more efficiently depleted the external K+ and reached higher initial rates of low-K+ uptake than plants grown with NO3-. One possible influence of K+ content of shoot, but not of roots, on K+ uptake was evidenced. Enhanced K+-uptake capacity was correlated with the induction of H+ extrusion by PM H+-ATPase. In plants grown in high K+ solutions, the increase in the active H+ gradient was associated with an increase of the PM H+-ATPase protein concentration. In contrast, in plants grown in solutions containing 0.2 mM K+, only the initial rate of H+-pumping and ATP hydrolysis were affected. Under these conditions, two specific isoforms of PM H+-ATPase were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3--grown plants. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+-pumping activity of PM H+-ATPase.
Keywords:PM, plasma membrane   t0, plants grown for 15   d in full nutrient solutions   t1, t2 and t3, plants subjected to K+ starvation for 24, 48 and 72   h, respectively   TE, transport efficiency   UE, uptake efficiency
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号