首页 | 本学科首页   官方微博 | 高级检索  
     


Testing models for transport systems dependent on periplasmic binding proteins.
Authors:R M Krupka
Affiliation:Research Centre, Agriculture Canada, London.
Abstract:A carrier model in which transport across the cytoplasmic membrane is mediated by a periplasmic binding protein (Krupka, R.M. (1992) Biochim. Biophys. Acta 1110, 1-10) is shown to account for many of the properties of these systems: (i) Michaelis-Menten kinetics; (ii) seemingly irreversible uptake; (iii) the absence of exchange transport and counter-transport; (iv) substrate half-saturation constants that in different systems may be lower or higher than the dissociation constant of the binding protein; (v) the high concentration of the binding protein in the periplasm and its weak association with the membrane component. The binding protein appears to function as a valve or rectifier that permits the substrate to enter the cell, but blocks exit in both the energized and de-energized states. The asymmetry depends on both the abruptness and the extent of the conformational change in the binding protein. Characteristically, these systems build up steep gradients across the membrane, circumstances in which such a valve might be important. In agreement with the mechanism, (a) the binding protein is missing in members of the same family of transporters that function in export of the substrate rather than import; and (b) in Gram-positive organisms, which have no periplasmic space, binding proteins function while anchored to the cytoplasmic membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号