Support vector machine approach for protein subcellular localization prediction |
| |
Authors: | Hua S Sun Z |
| |
Affiliation: | Institute of Bioinformatics, State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China. huasj00@mails.tsinghua.edu.cn |
| |
Abstract: | MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|