首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational coupling,bridge helix dynamics and active site dehydration in catalysis by RNA polymerase
Authors:Steve A Seibold  Badri Nath Singh  Chunfen Zhang  Maria Kireeva  Céline Domecq  Annie Bouchard  Anthony M Nazione  Michael Feig  Robert I Cukier  Benoit Coulombe  Mikhail Kashlev  Michael Hampsey  Zachary F Burton
Abstract:Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.
Keywords:TEC  ternary elongation complex  RNAP  RNA polymerase  DNAP  DNA polymerase  wt  wild type  Tt  Thermus thermophilus  Sc  Saccharomyces cerevisiae  Ec  Escherichia coli  AMPcPP  α  β-methylene adenosine triphosphate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号