首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assembly and properties of chromatin containing histone H1
Authors:A Rodríguez-Campos  A Shimamura  A Worcel
Institution:Department of Biology, University of Rochester, NY 14627.
Abstract:The Xenopus oocyte supernatant (oocyte S-150) forms chromatin in a reaction that is affected by temperature and by the concentration of ATP and Mg. Under optimal conditions at 27 degrees C, relaxed DNA plasmids are efficiently assembled into supercoiled minichromosomes with the endogenous histones H3, H4, H2A and H2B. This assembly reaction is a gradual process that takes four to six hours for completion. Micrococcal nuclease digestions of the chromatin assembled under these conditions generate an extended series of DNA fragments that are, on average, multiples of 180 base-pairs. We have examined the effect of histone H1 in this system. Exogenous histone H1, when added at a molar ratio of H1 to nucleosome of 1:1 to 5:1, causes an increase in the micrococcal nuclease resistance of the chromatin without causing chromatin aggregation under these experimental conditions. Furthermore, the periodically arranged nucleosomes display longer internucleosome distances, and the average length of the nucleosome repeat is a function of the amount of histone H1 added, when this histone is present at the onset of the assembly process. In contrast, no major change in the length of the nucleosome repeat is observed when histone H1 is added at the end of the chromatin assembly process. Protein analyses of the purified minichromosomes show that histone H1 is incorporated in the chromatin that is assembled in the S-150 supplemented with histone H1. The amount of histone H1 bound to chromatin is a function of the total amount of histone H1 added. We define here the parameters that generate histone H1-containing chromatin with native nucleosome repeats from 160 to 220 base-pairs, and we discuss the implications of these studies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号