首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effective size of mixed sexually and asexually reproducing populations
Authors:Yonezawa Katsuei  Ishii Takuro  Nagamine Tsukasa
Institution:Department of Biotechnology, Kyoto Sangyo University, Kyoto 603-8555, Japan. yonezaw@cc.kyoto-su.ac.jp
Abstract:Using the transition matrix of inbreeding and coancestry coefficients, the inbreeding (N(eI)), variance (N(eV)), and asymptotic (N(e lambda)) effective sizes of mixed sexual and asexual populations are formulated in terms of asexuality rate (delta), variance of asexual (C) and sexual (K) reproductive contributions of individuals, correlation between asexual and sexual contributions (rho(ck)), selfing rate (beta), and census population size (N). The trajectory of N(eI) toward N(e lambda) changes crucially depending on delta, N, and beta, whereas that of N(eV) is rather consistent. With increasing asexuality, N(e lambda) either increases or decreases depending on C, K, and rho(ck). The parameter space in which a partially asexual population has a larger N(e lambda) than a fully sexual population is delineated. This structure is destroyed when N(1 - delta) < 1 or delta > 1 - 1/N. With such a high asexuality, tremendously many generations are required for the asymptotic size N(e lambda) to be established, and N(e lambda) is extremely large with any value of C, K, and rho(ck) because the population is dominated eventually by individuals of the same genotype and the allelic diversity within the individuals decays quite slowly. In reality, the asymptotic state would occur only occasionally, and instantaneous rather than asymptotic effective sizes should be practical when predicting evolutionary dynamics of highly asexual populations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号