首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula)
Authors:Sellin Arne  Sack Lawren  Õunapuu Eele  Karusion Annika
Institution:Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
Abstract:Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower (‘shade position’) and upper thirds of the crowns (‘sun position’) of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (Klb), petioles (KP) and branches (i.e. leafless stem; KB) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200–250 µmol m?2 s?1 using white, blue or red light. Klb depended significantly on both light quality and canopy position (P < 0.001), KB on canopy position (P < 0.001) and exposure time (P = 0.014), and none of the three factors had effect on KP. The highest values of Klb were recorded under the blue light (3.63 and 3.13 × 10?4 kg m?2 MPa?1 s?1 for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46 × 10?4 kg m?2 MPa?1 s?1, respectively) and lowest values under red light (2.83 and 2.02 × 10?4 kg m?2 MPa?1 s?1, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, Klb may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of Klb within and under canopies, and its impacts on gas exchange.
Keywords:branch hydraulic conductance  forest canopy  leaf hydraulic conductance  light spectrum  liquid‐phase resistance  petiole hydraulic conductance  potassium ions  shoot hydraulic conductance  xylem sap
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号