首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of structure and redox state of prenylquinones on thermotropic phase behaviour of phospholipids in model membranes
Authors:Jemioła-Rzemińska Małgorzata  Myśliwa-Kurdziel Beata  Strzałka Kazimierz
Affiliation:Department of Plant Physiology and Biochemistry, The Jan Zurzycki Institute of Molecular Biology, Jagiellonian University, Ul. Gronostajowa 7, 30-387 Kraków, Poland.
Abstract:Our study was aimed to investigate the significance of the isoprenoid side chain size as well as redox state of the quinone ring for interaction of two main classes of prenylquinones: plastoquinones (PQ) and ubiquinones (UQ) with lipid bilayers. By use of differential scanning calorimetry (DSC) we have followed the thermotropic behaviour of multilamellar vesicles prepared from dipalmitoylphosphatidylcholine (DPPC) upon incorporation of increasing amount (1.3-12 mol%) of quinone (quinol) molecules. Our studies reveal that as the side chain is shorter (from 9 to 2 isoprenoid units) the height of the calorimetric profiles is reduced and the temperature of the main transition of DPPC (T(m)) decreases (T(m)=39.4 degrees C for a sample with 12 mol% of PQ-2), and then increases up to 39.8 degrees C for PQ-1. For the samples containing quinols the effect is more pronounced even at lower concentration. The greater influence of the added prenylquinones on the pretransition demonstrates a stronger distortion of the DPPC packing in the gel state. It seems that this is the isoprenoid side chain length rather than the redox state of prenylquinones that determines their effectiveness in perturbation of thermotropic properties of lipid bilayer.
Keywords:Plastoquinone   Ubiquinone   Liposome   Phospholipid bilayer   Phase transition   DSC
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号