Photosynthetic Electron Transport System Promotes Synthesis of Au-Nanoparticles |
| |
Authors: | Nisha Shabnam P. Pardha-Saradhi |
| |
Affiliation: | Department of Environmental Studies, University of Delhi, Delhi, India.; US Naval Reseach Laboratory, United States of America, |
| |
Abstract: | In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au3+ solutions purple in presence of light of 600 µmol m−2 s−1 photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au3+ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au3+ to Au0 which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5–20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m−2 s−1. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au3+ to Au0 to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles. |
| |
Keywords: | |
|
|