首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Surface-water chemistry and fertility variations in the tropical Atlantic across the Paleocene/Eocene Thermal Maximum as evidenced by calcareous nannoplankton from ODP Leg 207, Hole 1259B
Authors:Shijun Jiang  Sherwood W Wise Jr
Institution:Department of Geological Sciences, Florida State University 4100, 108, Carraway Building, Tallahassee, FL 32306, USA
Abstract:Calcareous nannoplankton assemblages at Ocean Drilling Program (ODP) Site 1259 on Demerara Rise (western equatorial Atlantic) underwent an abrupt and fundamental turnover across the Paleocene/Eocene Thermal Maximum (PETM) ~55.5 m.y. ago. The PETM is marked by a dissolution interval barren or nearly-barren of nannofossils due to the rapid acidification of the world oceans. Toweius, Fasciculithus, and Chiasmolithus sharply decrease at the onset, whereas Chiasmolithus, Markalius cf. M. apertus, and Neochiasmolithus thrive immediately after the event, which also signals the successive first appearances of Discoaster araneus, Rhomboaster, and Tribrachiatus. The environmental indications of these changes were further investigated by correspondence analysis on quantitative nannofossil counts. The PETM event has been attributed to CO2-forced greenhouse effects. At Site 1259, the elevated pCO2 and subsequent lowered surface-water pH values at the onset of the PETM caused intensive carbonate dissolution, producing the nannofossil-barren interval. The chemically stressed habitats may well have also induced the evolution of ephemeral nannofossil “excursion taxa”, such as Rhomboaster and malformed discoasters (D. araneus and Discoaster anartios). Based on its sudden increase, Markalius cf. M. apertus is considered to have been a local opportunistic species that took advantage of the surface-water changes. At the same time, a presumably higher runoff from continental areas fertilized the western equatorial Atlantic as indicated by an increase in the abundance of r-mode specialists preferring high-nutrient conditions, such as Chiasmolithus, Coccolithus pelagicus, and Hornibrookina arca. Contrasts between the results of this study and previous work at ODP Site 690 in the Southern Ocean, the New Jersey continental margin, and the central paleoequatorial Pacific further demonstrate that the response to the PETM can be influenced by local differences in geologic setting and oceanographic conditions.
Keywords:Calcareous nannofossils  Paleoecology  Paleocene/Eocene Thermal Maximum  Correspondence analysis  Surface-water chemistry  Paleoproductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号