Controlled degradation by ClpXP protease tunes the levels of the excision repair protein UvrA to the extent of DNA damage |
| |
Authors: | Mihaela Pruteanu Tania A. Baker |
| |
Affiliation: | Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. |
| |
Abstract: | UV irradiation damages DNA and activates expression of genes encoding proteins helpful for survival under DNA stress. These proteins are often deleterious in the absence of DNA damage. Here, we investigate mechanisms used to regulate the levels of DNA-repair proteins during recovery by studying control of the nucleotide excision repair (NER) protein UvrA. We show that UvrA is induced after UV irradiation and reaches maximum levels between ∼20 and 120 min post UV. During post-UV recovery, UvrA levels decrease principally as a result of ClpXP-dependent protein degradation. The rate of UvrA degradation depends on the amount of unrepaired pyrimidine dimers present; this degradation rate is initially slow shortly after UV, but increases as damage is repaired. This increase in UvrA degradation as repair progresses is also influenced by protein–protein interactions. Genetic and in vitro experiments support the conclusion that UvrA–UvrB interactions antagonize degradation. In contrast, Mfd appears to act as an enhancer of UvrA turnover. Thus, our results reveal that a complex network of interactions contribute to tuning the level of UvrA in the cell in response to the extent of DNA damage and nicely mirror findings with excision repair proteins from eukaryotes, which are controlled by proteolysis in a similar manner. |
| |
Keywords: | |
|
|