首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Circadian system responses to nocturnal and diurnal hosts in the kissing bug,Triatoma infestans
Authors:Pablo Martin Lopez  Luciana Beatriz Abrahan  Martin Roland Ralph  Verónica Sandra Valentinuzzi
Institution:1. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, Argentinavvalentinuzzi@gmail.com vvalentinuzzi@conicet.gov.ar;3. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, Argentina;4. Centre for Biological Timing and Cognition, Department of Psychology, University of Toronto, Toronto, Canada
Abstract:ABSTRACT

Insects express diverse behavioral rhythms synchronized to environmental cycles. While circadian entrainment to light–dark cycles is ubiquitous in living organisms, synchronization to non-photic cycles may be critical for hematophagous bugs that depend on rhythmic hosts. The purpose was to determine whether Triatoma infestans are capable of synchronizing to the circadian rhythms of potential hosts with temporally distinct activity patterns; and, if so, if this synchronization occurs through masking or entrainment. Precise synchronization with the food source may be critical for the insects’ survival due to the specific predatory or defensive nature of each host. Kissing bugs were housed in a compartment in constant dark, air-flow-connected to another compartment with a nocturnal or a diurnal host; both hosts were synchronized to a light–dark cycle. The activity rhythms of kissing bugs were modulated by the daily activity rhythms of the vertebrates. Effects were a decrease in the endogenous circadian period, independent of the host being nocturnal or diurnal; in some cases relative coordination occurred and in others synchronization was clearly achieved. Moreover, splitting and bimodality arose, phenomena that were also affected by the host presence. The results indicate that T. infestans were able to detect the non-photic cycle of their potential hosts, an ability that surely facilitates feeding and hinders predation risk. Understanding triatomines behavior is of fundamental importance to the design of population control methods.
Keywords:Circadian rhythms  non-photic synchronization  Triatominae  hematophagous vectors  Chagas disease  masking  entrainment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号