首页 | 本学科首页   官方微博 | 高级检索  
     


The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae)
Authors:Wu Xianting  McSteen Paula
Affiliation:Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802 USA.
Abstract:
Axillary meristems play a fundamental role in inflorescence architecture. Maize (Zea mays) inflorescences are highly branched panicles because of the production of multiple types of axillary meristems. We used auxin transport inhibitors to show that auxin transport is required for axillary meristem initiation in the maize inflorescence. The phenotype of plants treated with auxin transport inhibitors is very similar to that of barren inflorescence2 (bif2) and barren stalk1 (ba1) mutants, suggesting that these genes function in the same auxin transport pathway. To dissect this pathway, we performed RNA in situ hybridization on plants treated with auxin transport inhibitors. We determined that bif2 is expressed upstream and that ba1 is expressed downstream of auxin transport, enabling us to integrate the genetic and hormonal control of axillary meristem initiation. In addition, treatment of maize inflorescences with auxin transport inhibitors later in development results in the production of single instead of paired spikelets. Paired spikelets are a key feature of the Andropogoneae, a group of over 1000 grasses that includes maize, sorghum, and sugarcane. Because all other grasses bear spikelets singly, these results implicate auxin transport in the evolution of inflorescence architecture. Furthermore, our results provide insight into mechanisms of inflorescence branching that are relevant to all plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号