首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis.
Authors:M U Mera and T J Beveridge
Abstract:
To investigate the chemical mechanism of silicate binding to the surface of Bacillus subtilis, we chemically modified cell wall carboxylates to reverse their charge by the addition of an ethylenediamine ligand. For up to 9 weeks, mixtures of Si, Al-Fe-Si, and Al-Fe-Si plus toxic heavy metals were reacted with these cells for comparison with control cells and abiotic solutions. In general, more Si and less metal were bound to the chemically modified surfaces, thereby showing the importance of an electropositive charge in cell walls for fine-grain silicate mineral development. The predominant reaction for this development was the initial silicate-to-amine complexation in the peptidoglycan of ethylenediamine-modified and control cell walls, although metal ion bridging between electronegative sites and silicate had an additive effect. The binding of silicate to these bacterial surfaces can thus be described as outer sphere complex formation because it occurs through electrostatic interaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号