Activation of yeast enolase by Cd(II) |
| |
Authors: | S G Spencer J M Brewer |
| |
Affiliation: | Department of Biochemistry, University of Georgia, Athens Greece |
| |
Abstract: | Activation of yeast enolase by Cd2+ exhibits properties similar to activation by the physiological cofactor Mg2+. The activity is weakly stimulated, then inhibited by increasing ionic strength. The activity increases, then falls with increasing Cd2+ concentration. The effect of pH on activity produced by Cd2+ is very similar to that produced by Mg2+, except that the Cd2+ profile is shifted one pH unit to more alkaline values, and the maximum activity of the Cd2+-enzyme is about 10% of that of the Mg2+-enzyme. The apparent kinetic parameters of Cd2+ activation show little effect of pH except for inhibition by high concentrations of Cd2+: the apparent Ki increases sharply with pH. This is interpreted as the result of Cd2+ being a less effective "catalytic" metal ion, and Cd2+ being more effective in stabilizing the enzyme at alkaline pH's. The similarity of effects of ionic strength, divalent cation, and pH may be due to interaction with the same six sites per mole of enzyme. We also characterized the dependence of what is believed to be the enzyme-catalyzed enolization of a substrate analog, D-tartronate semialdehyde-2-phosphate (TSP) on similar parameters of pH, ionic strength, etc. The putative enolization is dependent on catalytic metal ion, although the TSP binds to the conformational Cd2+-enzyme complex. The reaction is very slow and very pH dependent, increasing with pH with a midpoint of reaction velocity at pH 8.7. There is a strong qualitative correlation between pH dependencies of reaction velocity of substrate conversion and TSP enolization and absorbance of the enzyme-bound TSP enolate, whether with Mg2+ or Cd2+ as cofactor. The slowness of the Cd2+-TSP reaction is not limited by proton release or any reaction involving covalent bonds to hydrogen. The apparent reaction rate constant increases linearly with Cd2+ concentration. Addition of excess ethylenediaminetetraacetic acid reverses the TSP reaction, but again very slowly. The binding of Cd2+ to the catalytic sites is characterized by low association and dissociation rate constants. |
| |
Keywords: | Address reprint requests to Dr. John M. Brewer Department of Biochemistry University of Georgia Athens GA 30602. |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|