Abstract: | Fibroblastic cultures from the skin of nondiabetic and diabetic (db/db) mice have been used to investigate alterations in the biological responses of diabetic cells to insulin. Confluent cultures from the skin of both nondiabetic and diabetic animals possess specific receptors for insulin. Diabetic fibroblasts exhibit only 36% as much specific binding of insulin as nondiabetic fibroblasts, because of a decrease in the total number of binding sites, without a change in binding affinity. Insulin caused a time- and dose-dependent increase in the rate of 2-deoxy D-glucose (dGlc) uptake and in ornithine decarboxylase (ODC) activity of both nondiabetic and diabetic fibroblasts. In nondiabetic cells, half-maximal increase in dGlc uptake was obtained with 0.3 nM insulin, and a maximum increase of 120% was obtained with 4.1 nM insulin. In contrast, diabetic cultures required 0.8 nM insulin for a half-maximal increase in dGlc uptake, and maximum stimulation with 4.1 nM insulin was only 50% above control levels. With 4-fold higher insulin concentrations, ODC activity of diabetic cells was only 40% that of nondiabetic cells. In nondiabetic cells, down regulation of insulin receptors by insulin abolished the ability of insulin to stimulate dGlc uptake. These results demonstrate that cells cultured from diabetic animals, which possess a decreased number of insulin receptors, also exhibit decreased stimulation of deoxy D-glucose uptake and ornithin decarboxylase activity by insulin. |