首页 | 本学科首页   官方微博 | 高级检索  
     


Mannan-binding protein blocks the activation of metalloproteases meprin alpha and beta
Authors:Hirano Makoto  Ma Bruce Yong  Kawasaki Nana  Okimura Kazumichi  Baba Makoto  Nakagawa Tomoaki  Miwa Keiko  Kawasaki Nobuko  Oka Shogo  Kawasaki Toshisuke
Affiliation:Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
Abstract:Mannan-binding protein (MBP) is a C-type serum lectin that is known to be a host defense factor involved in innate immunity, and recognizes mannose, fucose, and N-acetylglucosamine residues. Although some exogenous MBP ligands have been reported, little is known about its endogenous ligands. In the present study, we found that endogenous MBP ligands are highly expressed in the brush border epithelial cells of kidney-proximal tubules by immunohistochemistry, and both meprin alpha and beta (meprins), as novel endogenous MBP ligands, have been identified through affinity chromatography and mass spectrometry. Meprins are membrane-bound and secreted zinc metalloproteases extensively glycosylated and highly expressed in kidney and small intestinal epithelial cells, leukocytes, and certain cancer cells. Meprins are capable of cleaving growth factors, extracellular matrix proteins, and biologically active peptides. Deglycosylation experiments indicated that the MBP ligands on meprins are high mannose- or complex-type N-glycans. The interaction of MBP with meprins resulted in significant decreases in the proteolytic activity and matrix-degrading ability of meprins. Our results suggest that core N-linked oligosaccharides on meprins are associated with the optimal enzymatic activity and that MBP is an important regulator for modulation of the localized meprin proteolytic activity via N-glycan binding. Because meprins are known to be some of the major matrix-degrading metalloproteases in the kidney and intestine, MBP, which functions as a natural and effective inhibitor of meprins, may contribute, as a potential therapeutic target, to tumor progression by facilitating the migration, intravasation, and metastasis of carcinoma cells, and to acute renal failure and inflammatory bowel diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号