首页 | 本学科首页   官方微博 | 高级检索  
     


Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression
Authors:Nichols Nicole Magnasco  Benner Jack S  Martin Deana D  Evans Thomas C
Affiliation:New England Biolabs, Inc., Beverly, Massachusetts 01915-5599, USA.
Abstract:Use of the naturally split, self-splicing Synechocystis sp. PCC6803 DnaE intein permits separate purification of the N- and C-terminal intein domains. Otherwise spontaneous intein-mediated reactions can therefore be controlled in vitro, allowing detailed study of intein kinetics. Incubation of the Ssp DnaE intein with ZnCl(2) inhibited trans splicing, hydrolysis-mediated N-terminal trans cleavage, and C-terminal trans cleavage reactions. Maximum inhibition of the splicing reaction was achieved at equal molar concentrations of ZnCl(2) and intein domains, suggesting a 1:1 metal ion:intein binding stoichiometry. Mutation of the (+)1 cysteine residue to valine (C(+)1V) alleviated the inhibitory effects of ZnCl(2). Valine substitution in the absence of ZnCl(2) blocked trans splicing and decreased C-terminal cleavage kinetics in a manner similar to that of the native (+)1 cysteine in the presence of ZnCl(2). These data are consistent with Zn(2+)-mediated inhibition of the Ssp DnaE intein via chelation of the (+)1 cysteine residue. N-Terminal trans cleavage can occur via both spontaneous hydrolysis and nucleophilic (e.g., DTT) attack. Comparative examination of N-terminal cleavage rates using amino acid substitution (C(+)1V) and Zn(2+)-mediated inhibition permitted the maximum contribution of hydrolysis to overall N-terminal cleavage kinetics to be determined. Stable intermediates consisting of the associated intein domains were detected by PAGE and provided evidence of a rapid C-terminal cleavage step. Acute control of the C-terminal reaction was achieved by the rapid reversal of Zn(2+)-mediated inhibition by EDTA. By inhibiting both the splicing pathway and spontaneous hydrolysis with Zn(2+), reactants can be diverted from the trans splicing to the trans cleavage pathway where DTT and EDTA can regulate N- and C-terminal cleavage, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号