Type I phosphatidylinositol 4-phosphate 5-kinase controls neutrophil polarity and directional movement |
| |
Authors: | Rosa Ana Lacalle, Rosa M. Peregil, Juan Pablo Albar, Ernesto Merino, Carlos Martí nez-A, Isabel M rida, Santos Ma es |
| |
Affiliation: | Rosa Ana Lacalle, Rosa M. Peregil, Juan Pablo Albar, Ernesto Merino, Carlos Martínez-A, Isabel Mérida, and Santos Mañes |
| |
Abstract: | Directional cell movement in response to external chemical gradients requires establishment of front–rear asymmetry, which distinguishes an up-gradient protrusive leading edge, where Rac-induced F-actin polymerization takes place, and a down-gradient retractile tail (uropod in leukocytes), where RhoA-mediated actomyosin contraction occurs. The signals that govern this spatial and functional asymmetry are not entirely understood. We show that the human type I phosphatidylinositol 4-phosphate 5-kinase isoform β (PIPKIβ) has a role in organizing signaling at the cell rear. We found that PIPKIβ polarized at the uropod of neutrophil-differentiated HL60 cells. PIPKIβ localization was independent of its lipid kinase activity, but required the 83 C-terminal amino acids, which are not homologous to other PIPKI isoforms. The PIPKIβ C terminus interacted with EBP50 (4.1-ezrin-radixin-moesin (ERM)-binding phosphoprotein 50), which enabled further interactions with ERM proteins and the Rho-GDP dissociation inhibitor (RhoGDI). Knockdown of PIPKIβ with siRNA inhibited cell polarization and impaired cell directionality during dHL60 chemotaxis, suggesting a role for PIPKIβ in these processes. |
| |
Keywords: | |
|
|