首页 | 本学科首页   官方微博 | 高级检索  
     


PHOSPHATE AND SILICATE GROWTH AND UPTAKE KINETICS OF THE DIATOMS ASTERIONELLA FORMOSA AND CYCLOTELLA MENEGHINIANA IN BATCH AND SEMICONTINUOUS CULTURE1
Authors:David Tilman  Susan Soltau Kilham
Abstract:Information on the nutrient kinetics of Asterionella formosa Hass. and Cyclotella meneghiniana Kutz. under either phosphate or silicate limitation was obtained for use in a Monod model and in a variable internal stores model of growth. Short-term batch culture growth experiments were fit to the Monod model and long-term semicontinuous culture experiments and short-term uptake experiments were fit to the variable internal stores model. Mathematical analysis indicates that the parameters of the 2 models may be expressed in terms of each other at steady state. The qualitative results of both batch and steady state culture methods agree. For limiting phosphate experiments. A. formosa is better able to grow at low PO4-P concentrations than C. meneghiniana, as shown by its lower K for PO4-P limited growth. The kQ of A. formosa compared to C. meneghiniana found in long-term semicontinuous culture indicates that A. formosa is almost an order of magnitude more efficient at using internal phosphate for growth. The qualitative results under silicate-limited growth of C. meneghiniana is less than that of A. formosa. The kQ from semicontinuous culture experiments indicates that C. meneghiniana is the more efficient at using internal silicate for growth. Nutrient uptake experiments showed more variability from a Michaelis-Menten relationship than short-term growth experiments. There were no significant differences between the 2 species in half saturation constants for either phosphate or silicate uptake. We observed a marked dependence of the coefficient of luxury consumption (R) of phosphate on the steady state growth rate. A. formosa has a higher R than C. meneghiniana.
Keywords:Asterionella  Cyclotella  diatoms  growth kinetics  phosphate  silicate  uptake kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号